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ABSTRACT 1. INTRODUCTION

The elements of a theory for elastic composites In this paper we use a theory based on
with a changing microstructure, such as microcracking, thermodynamics with internal state variables
are reviewed. This formulation, which uses internal (Schapery, 1990a) to characterize and then predict
state variables and potentials like strain energy and mechanical behavior of a highly-filled rubber with
work, is then illustratec by mathematically distributed microcracks. A similar study of fiber-
characterizing and predicting the damage and reinforced plastic is reported elsewhere (Schapery,
deformation behavior of particle-filled rubber under 1989a). The previously developed micromechanical
axial straining and confining pressure. Next, a model (Schapery, 1986) serves to guide the
micromechanical model, which accounts for effects of thermodynamic formulation for general stress states
distributed microcracks and particles on overall and to identify the physical significance of the
deformation behavior, is described and shown to be in internal state variables. The effect of individual
agreement with experimental findings. It is then particles and microcracks is smeared out in that the
indicated how this model may be combined with the composite is represented as a homogeneous continuum on
potential theory to extend the results from specimens a scale that is much larger than particle and crack
under axial straining and pressure to more general sizes. This type of idealization is basic to the many
strain states. studies in "continuum damage mechanics"; see, e.g.

Krajcinovic and Lemaitre (1987). However, the
NOMENCLATURE underlying thermodynamic formulation (Schapery, 1990a)

is not limited to this idealization.
a,b,R Radii in model composite The nonlinear behavior of filled rubber, such as

Aij , Bij Moduli solid propellant, tires and numerous other commercial
rubber products, has been studied extensively over

cij Coefficients in dual energy many years. Large strains (Swanson, 1983), vacuole
E Young's modulus GPa (b/in 2  (or crack) formation and growth (Farris, 1968),

viscoelasticity (Schapery, 1982), and the Mullins'

fm Thermodynamic force effect in unloading behavior (Mullins, 1969) all
p Pressure GPa (Ib/in 2  contribute to the complex behavior of solidpropellant, which is the material that is used here to

qj Generalized displacement illustrate the damage theory. In this paper we

Qj Generalized force account for only nonlinearity of stress-strain
behavior during loading. Viscoelasticity and the

S, Sm Structural parameters Mullins' effect may be incorporated using the approach

uj Displacement described in other papers (Schapery, 1982, 1990a). In
contrast to plasticity theory, nonlinear behavior

v, ed Dilatation during loading is not necessarily tied to residual
V, Vo  Volume (plastic) strains or other behavior associated with

unloading; this point is illustrated by Schapery
W Strain energy (1989a) for fibrous composites.

WT* D Total work and dual work froIn Section 2 we summarize the primary results
WTDfrom the thermodynamic theory (Schapery, 1990a) which

E Strain is expressed in terms of an arbitrary number of

v Poisson's ratio independent generalized displacements and internal
state variables. Characterization of the behavior of

o Stress solid propellant subjected to confining pressure and

*Prepared for the Proceedings of the Winter Annual Meeting of the American

Society of Mechanical Engineers, Applied Mechanics Division, November 1990.



axial stretching serves in Secticn 3 to illustrate the where W = W = 0 in the reference state. Thus, Ws may
theory when one internal state variable is sufficient be interpreled as that portion of the total work WT
to account for the damage. An elementary model of which contributes to changes in the structure.
microcracking is used in Section 4 to connect the The second law of thermodynamics provides an
internal state variables to the microstr.,zture. It inequality as a constraint on the changes in state,
should be noted that Sections 3 and 4 describe and
expand upon earlier work by Schapery (1986, 1987a). W T S' > 0 (7)
In Section 5 this model is used to generalize results
for axisymmetric loading to a general strain state. where T is absolute temperature and S' is the entropy

production rate. Even if equation (3) is satisfied
2. ELASTIC BEHAVIOR WITH CHANGING MICROSTRUCTURE for any one Sr . Lhis inequality may not allow it to

change. Additionally, instantaneous values of the Sr
We consider an elastic structure or material are such that they minimize the total wurk hen the

whose thermodynamic state is a function of independent body passes through stable states; i.e.,
generalized displacements qj(j = 1,2,....J) and
internal state variables S (m = 1,2 .... M) as well as aWT/aSr= 0 (8)
temperature or entropy; ine astic behavior arises from 2

changes in the S_. Generalized forces Qj are defined (C2W S )6S 6S > 0 if 65S > 0 (9)
in the usual way in that p r p

It should be emphasized that minimum total work
6W' = Q6q. (j not summed) (1) is a necessary and sufficient conditinn fnr

Stability. i, contrast, minimum W, rather than WT, is
fnr each virtual displacecmczn L., wnere ow is trne equivalent to the stability condition for systems in
, work. Then, from thermodyamics the neighborhood of equilibrium states, according to

classical thermodynamic theory. When 0 and
equation (3), with f 0 0, governs changes ' S, the

Q.= BW/qj (2) system is not in t~e neighborhood of equilisrium;
regardless of how slowly processes occur, the total

where W is the helmholtz free energy (when temperature entropy production WS/T between any two states is the
is used as an independent state variable) or the same.
internal energy (when entropy, instead of temperature, It is observed that equation (3) represents P
is an independent variable). For brevity, thermal equations for finding the Sr as functions of q
effects will not be considered here, and therefore we Then, WT Z WT(q ,Sr(q.),S ) where the S are t4'
shall refer to W simply as the strain enerqy. Thc constant parameters. Fiom e~uation (5),
generalized displacements q. may be, for example, the
uniform strains in a matdrial element and Q- the Qj= aw /aqj  (10)
conjugate stresses, or qi and Qi may be, respectvely, (

the displacements and forces ap lied to a structure, showing that the body exhibits hyperelastic behavior
The internal state variables serve to define during the time any particular set of parameters Sr

changes in the structure such as micro- or macro- undergoes change. Because the total work is a
cracking, and ar called structural parameters, potential during inelastic (and elastic) processes,
Whcnave- any one Sm$O, we specify as the evolution the incremental stiffness matrix is symmetric.
law, Conversely, given that the stiffness matrix is

symmetric when one or more Sr change, then both
fm= aWs/aSm (3) equations (3) and (10) follow.

If forces act on crack faces they have to be
where Ws = W,(S ) is a state function of one or more included in the set Qi unless they are due to contact
Sm; also, fm is he thermodynamic force, without dissipation (gliding without a shear traction

or no sliding); in the latter cases, the effect of
fm - aW/aS m  (4) crack opening and closing may be taken into account

through the form of the strain energy function.
The left side of equation (3) is the available force Sliding with Coulomb friction, if significaent, za"not
for producing changes in Sm. while the right side is be accounted for through a work potential, and
the required force. For any specific set of processes therefore the stiffness matrix is not necessarily
(i.e. histories qj(t)), equation (3) may not be symmetric during processes involving crack face
satisfied by some of the parameters; if it is not, sliding. If, however, one can use a potential to
those Sm will be constant. The subscript r or p will characterize the relationship between crack-face
henceforth be used in place of m to designate the forces and relative displacements between crack faces,
parameters that change, which are taken to be R In equation (10) may be extended to this case by
number, including this surface potential (which may depend on

The total work done on the body by QJ during an additional structural parameters) in WT. Such a
actual process (i.e., a process for which parameters simplification is applicable with surface free-energy
change in accordance with equation (3)), starting at effects (Schapery, 1990a); also, it was proposed by
some reference state, is denoted by WT, Schapery (1989b) to account for crack-face friction in

ice under compression.
Wi f Q dqj (5) In the next section we illustrate the use of the

theory by combining it with experimental results on
where the summation convention for repeated indices is solid propellant. One structural parameter (internal
used. From equations (2)-(5) we find that WT is a state variable) S appears to be sufficient to
function of the state (qi, Sm), and is given by characterize the damage state for the particular

axisymmetric loading used. For this case we may take
WT= W + Ws (6) S = W without loss in generality. Then from

2



equations (3) and (4), when 0 , WTd= W1+ S (21u)

2y = -1 (11) This reformulation of the basic theory, in which theindependent variables are a mix of strain and stress
and from equation (7), variables, is covered in the more general earlier work

by Schapery (1990a) using an arbitrary number o,
S 0 (12) generalized forces and displacements; it is shown that

WTd, just as W1 , is a minimum with respect to Sm at
3. A SPECIMEN UNDER AXIAL EXTENSION AND PRESSURE each stable state.

Equations (19) and (21) will be used with some of
Consider a cylindrical bar (not necessarily with the experimental data in Fig. 1 to obtain Wd, and then

a circular cross-section) which is subjected to
specified axial displacement U and all-around pressure 32I .15

p. As generalized displacements select EXPERIMENT

ql= U/Lo q2
= AV/V °  (13) C o STRESS/0 2 0 x x x DILATRTION Z

where AV = volume change (>0 for an increase), Lo = P 20/ 50"
0 500initial axial length, and Vo  = initial volume. o 16 a;

Equation (1) yields n 6

Q F /A o Q2  -p (14) 
0

Q, 1 0 1 Q2=-_P -2 15 -05

where F1 is the axial force above that due to the P-15 65 165
pressure; F = 0 wher. the only loading is due to p.
Equations (3) and (14) are not limited to small
strains. Let us now replace the generalized notation 0 - -a

by engineering stress and strain notation, in which 0 .1 .2 .3 .4 ,5 .6 .7
RXIRL STRRIN

E = q1. v E q2, Q 1 (15) Fig. 1 Stress and dilatation behavior of a filled
elastomer (65 volume percent) at four con-

Note that v is the dilatation. fining pressures. Experimental data from
With the strain energy density W = W(fv,S), Farris (1968).

equation (2) becomes
we will predict the stress and dilatation responses

o = aW/a, p = -aW/av (16) not used in the characterization process. In each
test a constant pressure was applied and then the

Inpsmuch as E and p are given quantities in this sample was strained at a constant rate to "ailure. It
example, it is helpful to rewrite the theory so that is to be observed that the stress-strain curves are
they appear as the independent variables. For this essentially independent of pressure when the strain is
let us introduce a dual strain energy density Wd sufficiently small. In the strain range for which the
Wd(E,p,S) defined by stress-strain curves are the same, the dilatation v is

essentially zero. The dilatation in Fig. 1 is
WdE W + pv (17) actually that due to the stress o and does not include

the very small amount due to the pressure alone. At
The total differential of Eq. (17) is the highest pressure there is very little dilatation,

and therefore we shall assume for purposes of curve
aW aWd  aWd  fitting that S=O (undamaged material) in this case.
a dx + - dp + - dS

Determination of constitutive functions

= d + - dv + pdv + vdp + -L dS (18) As a start on determining Wd, let us expand it in
a power series in E and p and drop terms which are

From equations (16) and (18), higher than second order,
W-cxc +I1E21 2 (2

o = aWd/a3 , v = aWd/ap , aW/aS = awd/aS (19a) d= 1 2P + flc2 2 c22p c12 P
where the coefficients are, in general, functions of

and from equation (11) when 0 , S. From equation (19a),

aWd/aS = -1 (19b) o = c1+ c11x + C12 P, v = c 2+ c 12 + c22p (23)

The total dual work is defined by Regardless of the value of S, we assume o = v = 0 when
= p = 0, and therefore c1 = c2 = 0. Equation (23)

WTd_ WT+ pv (20) does not account for the small amount of nonlinearity
in the stress-strain curve at p = 500. We s~all

so that from equation (5), account for this nonlinearity by replacing E in

equation (22) by
WTd= odE + fvdp (21a) 2f = f(c) E r os05(4

and then using equation (6) and W. =S 0



where 05 is the stress for p = 500 and E is the p, in a first approximation, c1l and c12 were obtained
initia slope of the stress-strain curve; note tPat directly from equation (30) and the data, and then

for the linear case 05= Ec', and thus f = . they were expressed in terms of S using equation

Equation (22) becomes (28). Finally, equation (31) together with S for Pb =

1 2 + c65 yielded c2  as c12(S) was known at this stage.
W c11f c22 p  c12'P (25) The coefficien{S were recalculated by using pa = 15

and the first approximations for c12 and c22 in the

Equation (ia) yieids, second terms in equation (30). Convergence was
achieved with three iterations. lhe iterative process

C l2P v = 12 22P (26) described earlier for S used the third approximation
for c11  with each iteration. It is not really

Inasmuch as dilatation due to microcracking is never necessary to use iterations to find c-*; we could have

negative and these is no pressure dependence of the found all three coefficients by simulaneous solution

stress when v=O (cf. Fig. 1), we set c22 = c12 = 0 of equations (30) and (31) with Pa = 15, but it would

whenever equation (26) predicts v<O. have been necessary to interpolate with respect to c

The three functions of S in equation (26), i.e. since the same value of S has to be used in both

ci will be found by using the experimental data in equations.
Fi . 1 from the tests at the two lowest pressures. Figure 2 shows the coefficients as functions of

Specifically, we shall fit v in equation (26) to the
two dilatation curves and fit a to the stress-strain
curve at the lowest pressure. However, this process
gives us coefficients that depend on E, not S. In .
order to find their dependence on S, we first solve
equation (21) for 5, CJI/E

.6

2 
2

S = WTd- Wd =J odc +f vdp - Wd (27)
1 1.4 ¢ 2 -

where state 1 is E = p = S = 0 and state 2 is the
current strained and pressurized state. It is assumed
that equation (19b) is satisfied when : 0, and .2
therefore it gives us S = S(ep). This means WTd is
independent of path when Z ? 0, so that we may
integrate between state 1 (c=O, p=') and state 2 0

(c,p) by going from (0,0) to (0,p) and then from (asp) 0 2 4 6 8 10

to (c,p). The dilatation is (essentially) zero when STRUCTURAL PARAMETER, S (PSI)

E=O, and thus there is no contribution from the vdp Fig. 2 Coefficients in equation (26) for E = 400 psi
term. Equation (27) becomes (2.76 MPa).

S c f adE' - Wd  (28) the structural parameter over the S-range found from
o the experimental data. Low-order Chebyschev

where o is the stress at pressure p and strain E'; polynomials were used to obtain an analytical
hence, the integral in equation (28) is simply the representation for each coefficient. Second order was
area under the stress-strain curve in Fig. 1 for each used for c I and c12 and third order was used for c2 ;
pressure. The dual energy, equation (25), may be however, Th4i.he Case of c11, the expansion was in
rewritten as terms of S 'q" instead of S.

C1 1  05  It should be noted that the results are not
Wd= (ac + vp) +T-r - E) (29) limited to small strains, in that they are based on

experimental data out to c = 0.55. However, if the
It is seen from equations (28) and (29) that S geometrically linear expression for dilatation is used

can be found directly from the experimental data at to calculate transverse strain c , i.e. 2c + e = v
each pressure in Fig. 1, except for cl (which depends we find the Poisson's ratio for an unpress~rized bar
on S). The approach we used to determine S was to to be simply related to c12,
start with c1 1 = E in equ M on (29), and then find= /)1
in terms of this S, say S ; an improved S, say , ,-t/c = (1 - c12 )/2 (32)
watthen found by using the previously derived c11
(S'' )in equation (29). Further iterations produced where v = c12 E has been used; from Fig. 2, u = 0.5 at
no further change in S and cit. For each S, all three S = 0 and v - 0.36 at S = 10.
coefficients c11 , c12 , c2 2 were derived using equation
(26) for two pressure levels. Namely, for pressure p Prediction of the mechanical state
= 15 data for both a and v were used; introducing the
subscript a, we may write for this pressure, Having found the coefficients in WA, equation

(25), we shall now predict, S, o, and v by means of

- +equation (26) and the growth equation for S, equation

a= It--+ ci2Pa, Va= c 12 + c22Pa (30) (19b), i.e.

For a second pressure, Pb = 65, use only v, 1 dc1 1  1 dc22  2 dc12
2 dS f + 2d + d--S-cp =-1 (33)

V b= c 12': + c22Pb (31) fa f+2as P+-s C=-1 (3

For each (c,p) we may solve equation (33) for S by the

Recall that a is a function of only c, and that the Newton-Raphson method.
coefficients re functions of only S. By neglecting Figure 1 shows the theoretical predictions using

continuous lines. Recall that the stress for p=15 and



dilatation for p=15 and p=65 were used in curve- using it in predicting overall constitutive
fitting the coefficients. The small discrepancy functiuns. The model will then be used to provide a
between theory and experiment for these cases is due micromechanical interpretation of the behavior
to the use of low order polynomials for c. ; however, discussed in Section 3 and to guide the development of
use of higher order polynomials was found to produce a prucedure that accounts for damage-induced
less smooth curves (not making a special effort to anisotropy in more general stress states than the
reduce the roughness) and this, in turn. lead to axisymmetric state employed in the characterization
convergence problems in solving equation (33). process.
Prediction of dilatation for p=165 and 500 is For a recent evaluation of micromechanical models
excellent, and the stress predictions are quite of linear elastic moduli without cracks, see
good. It should be added that the original Christensen (1990). Included is a study of the
experimental data were not available to us. Rather it limiting behavior of composites with an incompressible
was necessary to take values from the curves in matrix and a high filler volume fraction. (Solid
Farris' (1968) publication, which is probably the main propellant typically consists of 65-80. volume
source of the difficulty in refining the curve fitting fraction of essentially riaid Da't~cles in a matrix
cf ci,. with a Poisson's ratio very close to 0.5, and thus

The source of the error in stress predictions for this limiting behavior is of interest to us.) For the
p>15 is at least due in part to the fact that the data so-called generalized self-consistent method (GSCM)
do not satisfy exactly the Londition for existence of without cracks, Christensen (1990, Table 1) gives the
a work potential, regardless of the number of rat o of composite-to-matr*. shear modulus as 27/16(1-
structural parameters which are used. This condition v ) , where v = 1 is the particle volume fractior.
may be found by differentiating the two relations in F~r consistenc with Schapery's (1986) result, the
equation (19a), numerical factor should be 27/4 instead of 27/16; in a

communication with Dr. Christensen it was confirmed
= _ (34) that 27/4 is the correct value.BE ap

Integration yields, Geometry of the microstructure. Analysis methods.

a E
v = - od&' (35) In one case discussed by Schapery(1986) the

0 random microstructure for a material like solid
propellant is idealized as illustrated in Fig. 3; see

showing how dilatation can be predicted by

differentiation of the area under the stress-strain
curves. This relationship is not fully satisfied oy i'
the experimental data in Fig. 1; in earlier work, the ',EF ECTIVEE.UI.
existence of a work potential was explicitly checked 0 WITHCRACKS
using a less direct but equivalent relationship based C

on equation (16) (Farris, 1968 and Schapery, 1987b).0
The relative error in equation (35) is about the same
as in Fig. 1 for stress predictions, and thus the - o

latter error does not appear to be due to the use of -- X
only )T.e structural parameter. Viscbelasticity, which
is neglected here and in these earlier studies, may be 9 EFFECTIVEMEOWM

at least partly responsible for the discrepancy, and CRACK

thus for the difference between theory and experiment
in Fig. 1; a method of accounting for viscoelasticity
is discussed elsewhere (Schapery, 1990a,b). I

Finally, it should be noted that Farris (1968)
employed p=15 to designate atmospheric pressure, and
thus used absolute pressure in characterizing the Fig. 3 Geometry for the generalized self-consistent
material behavior. We examined the effect of using method with microcracks.
gage pressure for p (so that the pressures in Fig. 1
are taken as 0,50,150, and 485), and found essentially Cornwell and Schapery (1975) and Schapery (1986) for
the same results as shown for the theory in Figs. 1 SEM photomicrographs of solid propellant. Each
and 2. When the characterization based on absolute particle is assumed to be rigid, spherical (with
pressures was used to predict the stress for p = 0, at radius a), and surrounded by a incompressible rubber

= 0.55 this stress was found to be 8 percent less shell of constant thickness, b-a. A high volume
than the stress for p = 15. fraction of filler is assumed so that (b-a)/b<1.

Outside of this two-phase sphere is an effective
4. A MODEL FOR MICROCRACKING medium with the (unknown) properties of the random

particle composite. One or two axisymmetric cracks
In an earlier study (Schapery, 1986) developed a are in the rubber shell; their surfaces are concentric

mathematical model for axisymmetric deformation with the particle surface, may be within the rubber or
behavior of a random particle-reinforced rubber (or at the interface, and have sizes defined by polar
any other relatively soft, incompressible matrix) with angles e and e
microcracking; changes in the microstructure were The compolte model in Fig. 3 is subjected to
assumed to be entirely due to microcracking. Emphasis outer boundary displacements at r>c which correspond
was or th:c micromechanics of a material which is to those for a uniform strain field. Namely, the
linearly elastic for any given state of damage, displacement components ui referred to an orthogonal
although some effects of intrinsic material set of Cartesian coordinates xi are, for the far-
nonlinearity, viscoelasticity and microcrack growth field,
were studied. Here we shall briefly describe the
microstructural geometry and two different methods of ui= (ijx j (i,j = 1,2,3) (36)



where 'i.= C. are the components of a spacewise an abscissa that is proportional to the growth of
constant stri tensor; the summation convention is surface area of the cracks in Fig. 3,
used here and in what follows in that repeated indices
are to be summed over their range. (This displacement S - (cosfi - cos)k (37)
representation is valid for a completely general state
of small or large strains.) where either one crack or two equal cracks of angular

In the generalized self-consistent method (GSCM) size 6 hive been used. It should be recalled that the
of predicting linear elastic moduli, the strain energy structural parameter S used in Section 3 is the total
of the body in Fig. 3 is equated to that of a work input/volume less the strain energy density (cf.
hr-mogeneous body having the unknown effective equation (6) with S=Ws). In the micromechanical
moduli. By doing this without cracks and then with model, this work-difference is the work of creating
cracks, the moduli may be found from the set of new surface area. Assuming the fracture work/area is
equations arising from the strain energy equalities, constant, k - G , where Gc is the (constant) critical

In the second method, the displacements in energy release fate.
equation (36) are imposed directly on the surface r=b, The angle B and factor k were selected to
and the strain energy is calculated. This energy is produce approximaeely the same decrease in cj1(S) as
then equated to that for a homogeneous body with the shown in Fig. 2 for very small S and for S=10,
unknown effective moduli; the equality yields respectively; agreement between theory and experimeit
expressions for finding the moduli. Without cracks, for c l] at8 small S is best when s is vanishingly
the second method provides an upper bound to the shear small -10 ) for the GSCM and when 60 = 0.01 deg for
modulus for Hashin's (1962) composite spheres the two phase model, which are the values used for
assemblage. He assumed that there is a broad enough Figs. 4 and 5. By definition E E c11(0). A study of
distribution of radii b that the composite spheres fit the GSCM with c ? b showed that the closest agreement
together to form a continuum; we make the same with the experimental results was achieved by using
assumption here. c=b (i.e. no uncracked shell around the inner two-
Discussion of results phase cracked composite); only the latter case is

shown in Fig. 4.

We have used both methods for axisymmetric Consider now the prediction of stress and
straining, going beyond the work reported by Schapery dilatation by means of equations (26) and (33), with
(1986) and obtained the same qualitative results arid f e . The theory in Fig. 6 is in quite good
similar quantitative results for the two sets of
moduli, all as functions of the crack surfac, area. 3.I5
Figures 4 and 5 give the predictions of these two EXPERIMENT
methods for the elastic coefficients defined by o o a STRESS
equation (26), but with o/E replaced by c. We used X X X DILATATION
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Fig. 6 Stress and dilatation prediction based on
a- 22*E the generalized self-consistent method with

0 2 4 6 8 10 two cracks.
STRUCTURAL PARAMETER, S (PSI) agreement with the experimental results of Fig. 1

Fig. 4 Elastic coefficients from the generalized except for dilatation at intermediate pressures. We
self-consistent method with c=b. assumed there is no gas pressure in the cracks. Of

the four cases in Fig. 4 and 5, the GSCM with two
.. cracks agrees best with experimental data. The two-

CII/E - ONE CRACK phase model results, Fig. 5, lead to the poorestprediction because of the poor behavior of c12 and
---TWO CRACKS dc/dS, especially at small values of S. For all

four theoretical cases, the magnitude of the
coefficient c22 is well below the experimental result

.6 in Fig. 2. Consequently, the dependence of dilatation
on pressure is not accurately predicted. Referring to
equation (26), it is seen that c is a plane-strain

.4 bulk compliance in that c2  = v/p Vbr E=0.
Let us now return o equation (37) and the

-.. - results for the two-crack GSCM in order to relate k to
.2 - -C220E Gc and estimate the value of Gc. The surface area for

-C-- -- two equal-length cracks at a mean radius R is

0 2 4 6 e 10 A = 4nR (1-cos 8) (38)
STRUCTURAL PARAMETER, S (PSI) The volume of the representative volume element (the

Fig. 5 Elastic coefficients from the two-phase model, two-phase core in Fig. 3) is approximately 41R /3 if
(b-a)/b <- 1, and therefore the fracture work/volume
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is embedded in an effective medium. It would be
necessary to account for locally nonaxisymmetricS = 3(cos6 o - cos8)Gc/R (39) loading on each two-phase core (cf. equation 41)).Another generalization that should yield improvpshowing that k = 3Gc/R. The value of k = 226 psi values uf the plane strain bulk compliance is theprovioes the best agreement between theory and introduction of matrix compressibility. Whether orexperiment for cl, at S = 10, and was used in not the latter generalization alone would bepredicting the stress and dilatation curves in Fig. 6; sufficient to obtain realistic values of c22 , at leastthe predictions depend on dc1 1/dS through equation for overall axisymmetric loading, is not yet known.(33), which could have lead to an optimum k that isdifferent from that for c alone. (There is also Crack initiation and early growth behavior

weak dependence on the ot er coefficients and their
derivatives since pO). For k = 226 psi as well as The predictions made so far in this section area = 0 and a representative radius for particles in bdsed on the assumption that there are either twos8lid propellant of R = 10-3 in (25um), we find G. = equal cracks or one crack in the matrix layer around0.08 lb/in (13 J/m ). The matrix in the composite each particle prior to loading; but they are verystudied here is polyurethane rubber; it is encouraging short (a 5 0.01 deg) prior to loading. We have alsothat the intrinsic or threshold value of Gc is 0.05 studied the case of two, initially unequal cracks.lb/in for an unfilled polyurethane rubber studied With axial straining it was found that the energypreviously (Schapery, 1975). Finally, we note that release rate of the shortest crack reached thea = 22 deg at c = 0.55 for the predictions in Fig. 6 critical value first and that only it grows until itwhen p=15; for the case of one crack a = 37 deg. When reaches the size of the initially largest crack;p>15 the maximum crack angles are smaller. without cracks the highest stresses are at the top and

bottom of the particle in Fig. 3. Then, with furtherAlthough the damaged material is transversely straining, both grow as a pair of equal, stableisotropic, it is of interest to compare the c1  to cracks. Thus, when two very short cracks pre-exist,those for a fully isotropic material. We find ilnthe the only situation of practical interest for most oflatter case the available straining range is that of two equal-
size cracks.

c1 1= E, c12 = 1-2v, The "pre-existing" cracks may be indeed that,(40) arising during processing. Most, however, probably
2 develop from the high triaxial tensile stress-Ec22 = 

2 (I-2v)(1+v) = 3c12-c 1 concentrations between particles. Early experimental
and theoretical work by Gent and Lindley (1959) showedObserve that c12 = 0.28 at S=10 in Fig. 2, which that the strength of unfilled rubber in equal triaxialimplies for aJ isotropic material -c E - 0.76; tension is approximately 5ET/6, where Er is themoreover, -Ec /c = 3 at c12 = 1. Both e~erlmental Young's modulus (at zero strain) of the rubber. This(Fig. 2) and ~eoftical results (Figs. 4 and 5) show value was predicted by considering the growth of anthat the plane strain bulk compliance c 2 is initial, arbitrarily small, spherical void due toconsiderably less than that for an isoiropic remote, equal triaxial tension. When the tensionmaterial. This behavior is consistent with what one reaches and then exceeds 5Er/6 the voi is predictedexpects physically because the dominant orientation of to become unstable (due to a geometric nonlinearity)microcrack normals is in the direction of axial and grow without bound. As hypothesized by Williamsstretching. However, the microcrack model, in which and Schapery (1965), when the stress 5Er/ 6  isall cracks have an axis of symmetry in the axial approached a Saturn-ring crack forms and then growsstrA4iing dirert 4cn, cy'ib'ts 7 greater aristiapy kuntil ZJ,ere is suffitlent local stress relief forthan the experimental results. It is likely that an arrest). The smaller the initial cavity is, theimprovement in the model would be gained by allowing closer the strength is to 5E /6; for cavities on thefor a distribution of orientations e of the crack order of lOm or less we estimate for the materialsymmetry axis x relative to the global material axis studied above that the strength is close to this

x Fig. 7. This approach was outlined previously value.fr the two-phase model (Schapery, 1987a) and could be Recent work by Gent and Wang (1990) shows thati.lemect d using the riSCM; in the latter case, two- the triaxial strength of rubber is somewhat above thisphase cores with different orientations would be value when thc size 7. ne .,;ty ;s extremely
small. The new prediction accounts better than

x/ previously for the high-strain behavior of rubber; Itis believed there is an error in the energy analysis,
stemming from the use of internal cavity pressure

r(x) (instead of external tension) which acts on the
fracture surface, but the general conclusions appearto be correct. Considering the very high stress in a
real highly-filled composite propellant with
irregularly-shaped particles, it is reasonable to viewthe "pre-existing" cracks in the above analysis as the
arrested Saturn-ring cracks. That the experimentally

N X2observed dilatation is less than the prediction (Fig.S6) at Small strains may be, at least in part, due to
the lack of initial cracks until the critical stress
with a value of approximately Er between particles is
reached.

Fig. 7 Coordinate systems.



5. GENERALIZATINS FC0 , I3MRA', STlA.O STATES

A~islmmetric damage c11- (A,2 - A11A22)c2 2

With axisymmetric damage the composite material c12  (A1 2 - A2 2/3)c2 2  (47)
is tran versely isotropic. Regardless of the
micromechanical model employed, one may show that the A]
strain energy density in this case for a linearly c22  (2A12/3 - All- A2219)
elastic material can always be written in the form

The use of A.. in the micromechanical model not

1 2 2 2 2 only simplifies the analysis, but provides some moduli
Wo= 2 JA11v + A22ed+ 2A 2edv + A44('13 + Y23 ) which are practically independent of damage over the

range studied in Section 4. Namely, as 6 increased
from zero to its maximum value at the strain of 0.55,

+ Ae66('1 ] esj (41) we found Al1 /E decreased smoothly from infinity to
1aout unity, while A12 and A44 decreased by about 25

where x3 is the axis of material symmetry and and 15 percent, respectively. The remaining two
coefficients, A2 and A66, changed by 7 percent at

es- '22 - '11 e ed c33- v/3 most. This resu implies the energy release rate for
each crack in a two-crack composite core,

V - 11 L22
+  33 Y 2 c 12 (42)

4 3 aWo R o

'23- 2E23 , Y13 2-13 ERR - 3i"b a(crack area) = 3sine a(

and the five coefficients A.- are elastic moduli is dominated by dA /d unless the dilatation is very
(which depend on the state ofcracking or damage). small relative to thO other strains. lhus
The strains C.. are the tensor components introduced
in equation (3. Rv2  dA11

The work-conjugate stresses are ERR - 6sine de (49)

" aW0/av = A 11v + A12ed The crack growth condition is ERR = Gc; this equation
implies 3 depends mainly on a scalar invariant, the

"dz aWo/aed= A12v + A22ed  dilatation. We may therefore consider the dilatation
to he at least a rough measure of the magnitude of

"sa aw0 /aes= A66e damage during loading; we have verified this
(43) numerically using both methods in Section 4 for the

112 = aW /3Y12= A66Y12 case of a specimen loaded by axial straining and
pressure. Now, as A11 scales with E, the initial

'13= aW0 /aY13 = A4 4Y13  Young's modulus, we may write for v ? 0,

'23= aWo/aY2 = A4 4Y23  a - function (REv 2 /Gc) (50)

The virtual work condition 6W' = oa 6Cij, for each which is an increasing function of the argument; when
(i,j) pair, yields ;<0, the condition of constant damage, e=0, should be

1 used unless significant healing occurs.
*v= (011+ 022+ 033) Regardless of whether oniy dA I/dB or the other

modulus derivatives as well are 4deded in equation
* d= 33- (011+ 022)12 (44) (48), the material parameters affect the damage

through one dimensionless ratio, RE/G c . A decrease in
Os= ('22- .11)12 radius R or an increase in Gc reduces the amount of

damage.

where o.. are the components of the stress tensor in The strain energy density Wo in equation (48) is
the xi  dordinate system. For an isotropic material considered to be that for a composite with many

particles, each with two cracks in the example used.
A C-K A ~36 A 0 As both W V^ and the total crack surface area are
A: A 2 = 0 (45) proportional to the number of particles, there is no

A4 4= A6 6= G effect of this number on ERR. Similarly, the
work/volume in equation (39) is independent of the

where K and G are the bulk modulus and shear modulus, number of particles. However, both equations exhibit
respectively, dependence on the radius R. With a distribution of

sizes, this radius has to be interpreted as an
K = E/3(1-2v) , G = E/2(1+v) (46) "effective" value for the simplified models

employed. If one wants to explicitly account for two
In deriving moduli for the micromechanical models or more different sizes, say Rm(m=l, 2,...), they have

based on the geometry in Fig. 3, we found the form of to be explicitly included by using two or more two-
W and the associated strains in equations (41) and phase composite cores (particle plus rubber layer) in
( 2) to be especially convenient. It was the Aij in the effective modulus analysis. Growth of each of the
these equations that were developed first using the associated crack angles a obeys equation (48), with
two methods discussed in Section 4. Then, by relating ERR = G Each angle a , Fr the associated crack area
the strains and stresses in equations (42) and (44) to , is ihe structural Aram.ter Sm of Section 2 which
those in equation (26) (with a /E = E), we obtained obeys equation (3); if area is used, fm = (ERR)m.
the cij. For reference, the rel Rionshios are However, according to approximate equation (50) for



eaLr h., .l; angles depend p'-iri ly on one quantity, the orientation of the maximum principal strain is not
the maximum dilatation v his maximum value is the fixed, one will have to include composite core
current value of dila' ',n if v*rO for the entire orientations that reflect this history. Suppose, for
loading history. Th _ere is only one significant example, the principal strain orientations do not
structural paramet , ; we may use as this parameter change, but at one time or another each principal
tne maximum dilatation, the total fracture work W for strain has the largest value and it is large enough to
all cracks (A- in Section 2), or any other quantity produce a family of cracks. In general, the composite
which is reCated in a one-to-one fashion to WS .  If, will be orthotropic, and the moduli will depend on at
however v is used the total work WT will exhibit least three structural parameters, one b (or S) for
some -t h- ependence when v:O because equation (50) is each principal direction. The two-phase core in Fig.
n eXac'. Therefore, it is better to use S W 3 is simple enough that one can predict the crack face
s ,ce this choice guarantees path-independence of wor displacements, and thus readily introduce constraints
when ,C. which prevent crack-face overlap when necessary.

In some cases the damage may be axisymmetric Different types of damage may be introduced. If
even if the loading is not. Suppose, for example, the loading is like that discussed in Section 3, but

i22 when , ( , (I1) and all shear strains the axial strain is compressive instead of tensile,
vaiish. Then, 4 '3 3 alb e determines the damage the damage will be axisymmetric, but the cra-k axis
orientation, it will be axisymmetric. In such a case will be normal to the straining axis. A reasonable
the experimental results in Section 3 can be used description for this damage may be a belt-like crack
directly to derive Al , A22 , and A12 , without a that encircles the particle about the vertical axis.
micromechanical model. 

11
The remaining shear moduli A44  [he strain energy density of a composite co,'e with

and A6 6  have been found from the model to be such a crack can be easily derived using the
insensitive to damage, and thus we may use for them previously developed perturbation solution (Schapery,
the snear modulus in the undamaged state. This 1986).
approach has been usec to predict behavior in simple
snear irom the results in Fig. 2 (Schapery, 1987a). CONCLUSIONS

In general, the axis of isotropy (x3  in Fig. 3)
may not be parallel to an axis in the coordinate A thermodynamically based theory of mechanical
system used to represent the overall (applied) state behavior with damage growth was reviewed and
strains. In order to allow for an arbitrary then successfully applied to a filled rubber under
orientaticn use axisymmetric loading. The analysis proved to be quite

simple because of the path-independence of work (the
u. X'. (51) work potential) and the requirement of only one

structural parameter (or internal state variable).
where are the applied strains referred to Two different micromechanical models were then
convenien'ly defined coordinates x'. The relationship used to relate overall composite behavior to
oetween the strains in equations 142) and (51) is of microcracking and associated material parameters,
course given by the second-order tensc: transformation including filler size; the amount of damage is a

function of these parameters through one dimensionless
I m ikmjn n (52) ratio, RE/Gc, where R is a characteristic particle

size, E is &e initial Young's modulus, and G is the

where m i  is the cosine of the angle between the x critical energy release rate for microcracks. The
and x aes. Substitution of equation (52) into (423 model based on the generalized self-consistent method
gives'us ko in terms of L'." (GSCM), which is a special case of the thermodynamic

theory, agrees best with the experimental results.
Nnnaxisjmmetric damage In view of these encouraging results, it is

believed desirable to extend the GSCM to predict
For a general state of overall stress and strain, damage orientation and growth as well as overall

referred to the x' coordinates, mechanical behavior under general strain states. With

damage localization, such as the growth of a
3 Bjktk (53) macrocrack in the damaged continuum, the theory shouldstill apply except where there are high strain

If the damage is axisymmetric and we use x = x., the gradients, such as near the macrocrack edge. Then, as
associated moduli B.. may be easily explressIed in long as the work potential theory is applicable to the
terms of the five Ai1J4 equation (43). As B'o is continuum, the J integral will be applicable as a
a fourth-order tensor

1
, we may then predict it f0 any macrocrack characterizing parameter in many cases

orientation of xt. Both the GSCM and two-phase model (Schapery, 1987b). Viscoelastic effects may be easily
discussed in Section 4 can be used to predict B! incorporated in the theory using approximations
with nonaxisymmetric damage. It may be acceptabj]k o described elsewhere (Schapery, 1990b).
assume each crack is axisymmetric (thus simplifying
the two-phase core analysis) as long as one includes ACKNOWLEDGMENT
cores with different symmetry axis orientations
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